American Iron and Steel Institute v. Occupational Safety and Health Admin., U.S. Dept. of Labor

Decision Date28 March 1978
Docket NumberC,I,No. 76-2629,76-2359,Nos. 76-2358,76-2629,Nos. 76-2358 and 76-2371,No. 77-1088,Nos. 76-2359 and 76-2372,76-2630,R,No. 76-2424,Y,No. 77-1025,No. 76-2630,B,76-2424,A,77-1025 and 77-1088,AFL-CI,76-2371,77-1016,76-2372,No. 77-1016,s. 76-2358 and 76-2371,s. 76-2359 and 76-2372,77-1025,77-1088,s. 76-2358
Citation577 F.2d 825
Parties6 O.S.H. Cas.(BNA) 1451, 1978 O.S.H.D. (CCH) P 22,637 AMERICAN IRON AND STEEL INSTITUTE, Jones & Laughlin Steel Corporation, National Steel Corporation, Sharon Steel Corporation, Shenango, Incorporated, United States Steel Corporation, Wheeling-Pittsburgh Steel Corporation, Petitioners inepublic Steel Corporation, Petitioner inethlehem Steel Corporation, Petitioner inrmco Steel Corporation, Petitioner inrucible Materials Group and Colt Industries, Inc., Cyclops Corporation, Inland Steel Company, Petitioners inoungstown Sheet and Tube Company, Petitioner inmerican Coke and Coal Chemicals Institute, Petitioner inF & I Steel Corporation, Petitioner in, v. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, UNITED STATES DEPARTMENT OF LABOR, United States of America, Respondent, United Steelworkers of America,ntervenor.
CourtU.S. Court of Appeals — Third Circuit

Max O. Truitt, Jr., Michael S. Schooler, Wilmer, Cutler & Pickering, Washington, D. C., for petitioners in Nos. 76-2358, 76-2371, 76-2424, 76-2629, 76-2630, 77-1016, 77-1025; Robert R. Morris, Hacker & Morris, Washington, D. C., Raymond T. Cullen, Morgan, Lewis & Bockius, Philadelphia, Pa., of counsel.

David J. Toomey, Frank E. Morris, Pennie & Edmonds, New York City, for petitioner in Nos. 76-2359 and 76-2372; Edward P. Weber, Jr., Republic Steel Corp., Cleveland, Ohio, Joseph W. Swain, Jr., Montgomery, McCracken, Walker & Rhoads, Philadelphia, Pa., of counsel.

Miles C. Cortez, Jr., Welborn, Dufford, Cook & Brown, Denver, Colo., for petitioner in No. 77-1088.

Carin A. Clauss, Sol. of Labor, Benjamin W. Mintz, Associate Sol. for Occupational Safety and Health, Allen H. Feldman, Asst. Counsel for Appellate Litigation, Dennis K. Kade, Charles I. Hadden, Attys., U. S. Dept. of Labor, Washington, D. C., for respondent.

George H. Cohen, Bredhoff, Gottesman, Cohen & Weinberg, Washington, D. C., James D. English, United Steelworkers of America, Pittsburgh, Pa., for intervenor; Bernard Kleiman, Chicago, Ill., of counsel.

OPINION OF THE COURT

Before ROSENN and HIGGINBOTHAM, Circuit Judges, and VAN ARTSDALEN, District Judge. *

ROSENN, Circuit Judge.

These consolidated cases present petitions for review 1 of a new health standard governing employee exposure to coke oven emissions promulgated by the Secretary of Labor ("Secretary") on October 19, 1976, pursuant to the Occupational Safety and Health Act ("the Act"), 29 U.S.C. § 651 et seq. 2 In summary, the standard prescribes particular controls and procedures to reduce coke oven employees' exposure in specified regulated areas to toxic emissions in concentrations no greater than 0.15 mg. of the benzene-soluble fraction of total particulate matter (BSFTPM) per cubic meter of air (0.15 mg/m 3) present during the production of coke averaged over an eight-hour period. Additionally, the standard provides that if the prescribed controls do not reduce emission concentrations to the permissible exposure limit, employers would be required to provide respirators and to take additional steps to curtail excess emissions by conducting independent research and development.

Petitioners, coke manufacturers and their trade associations, make three principal claims: (1) the exposure limit of 0.15 mg/m 3 (milligrams per cubic meter of air) is invalid under the statute because there is no substantial evidence of health need for the prescribed exposure limit, and there is no evidence to support the feasibility of that limit; (2) the Secretary has exceeded his statutory power by combining a performance standard with specific required engineering and work practice controls and by requiring the coke manufacturers to conduct open-ended research to develop additional control technology, if necessary, to achieve the permissible exposure limit; (3) there is no substantial evidence to support the need for the specified various mandated controls and procedures 3 such as quarterly monitoring of employee exposure, prescribed protective clothing and hygiene facilities, the extent of the area to be regulated, engineering controls, and work practices.

I. BACKGROUND

Coke is utilized primarily by steel producing companies as a fuel in blast furnaces and foundries. It is the product of the destructive distillation of coal usually produced by heating coal in an inert atmosphere in a coke oven battery.

A coke oven battery is a huge rectangular structure, typically 200 or more feet long, 40 to 60 feet wide, and up to 50 feet in height. The battery is subdivided by refractory brick walls into a series of narrow ovens, approximately 18 inches wide and 13 to 20 feet high extending the full width of the battery. Between each oven are heating flues that burn gas derived from the coal to maintain high temperatures. This heating process causes the carbonization of the coal, resulting in the formation of the coke, a porous cellular substance, and various volatile gases. Each oven is provided with three or four charging holes in its roof through which coal is dropped into the oven, and two doors, one at each end of the oven, which are removed at the end of the coking cycle so that the incandescent coke can be pushed from the oven into the quench car. As the coal is coked, a considerable amount of gas generates. Almost all of it is captured and burned in the heating flues of the coke oven battery. This gas is removed from each oven through one or two vertical ducts, called stand pipes or ascension pipes, which are connected by horizontal ducts, called goosenecks, to one or two collector mains. In brief, coke production consists of three distinct operations: "charging," "coking," and "pushing."

The charging process begins by loading coal into a larry car which operates on a rail on top ("topside") of the battery. There are three or four coal hoppers or bins on the larry car for transferring coal from a coal bunker to the charging hold. After the coal is unloaded into the oven it is levelled to create a space between the coal and the oven so the gas evolved during the coking process can collect. To minimize escape of these gases, a process called "charging on the main" has been developed. The gases are forced out of the oven by "steam jet aspiration" through a stand pipe and into a "gooseneck" for transmittal to the collecting main. During the trip through the gooseneck, the gases are sprayed with condensation, "flushing liquor," from the collecting main. Prior to charging, a lid man removes the lids on the charging holes of the empty oven. The larry car operator then positions the car over the empty oven and he and the lid man then let the coal out of a hopper into the oven.

The second operation in the coking process is the heating of the ovens. The ovens are heated from 14 to 36 hours at temperatures of 2000o F. or more. After the heating is completed at the end of the coking cycle, the coke is ready for the third operation, the removal ("pushing") from the oven. A pusher machine on which is mounted a mechanical ram for pushing the coal from the oven is stationed in front of the oven's "push side door." The door is removed as is the door on the oven's opposite side, the "coke side door." The ram forces the coke out of the oven through the coke side door into a railroad car, the "quench car." The quench car carries the hot coke to the "quench tower" where it is cooled with water and then dumped onto the "coke wharf." Finally, it is conveyed to the screening stations for sizing. It is then ready for use.

The hazards to coke oven employees stem from the escape of volatile gas byproducts, a danger present at all three stages of the coking process. The composition of the gas from the coke oven varies with the type of coal, its moisture content, and the extent to which the coal has been coked. The gas contains numerous hydrocarbons and at varying times also includes particulate matter and tars. Emissions can leak out into the work place areas immediately adjacent to the ovens through the charging hole during the charging process. Because coke oven batteries are operated at extremely high temperatures and are subject to considerable thermal stress which often produces minute cracks in coke ovens, gas can leak from the ovens during the coking process. Emissions also can leak through the oven doors during the push, and from the quench car while the coke is carried to the quench tower. Finally, if for some reason the coal has not been thoroughly coked by the time it is pushed, the uncoked coal will precipitate a "green push" generating substantial gas emissions and characterized by flames shooting out of the coke mass with dense black smoke enveloping the entire area of the battery.

Efforts to reduce employee exposure to coke oven emissions began officially in 1969. The Secretary of Labor, acting under the authority of the Walsh-Healey Act, 41 U.S.C. §§ 35-45 (1970), adopted a 1967 recommendation of the American Conference of Governmental Industrial Hygienists that occupational exposures to "coal tar pitch volatiles" ("CTPV") be limited to 0.2 mg/m 3 on an eight hour day. 4 In 1971, the Secretary adopted that standard as an "established federal standard" pursuant to section 6(a) of the Act, 29 U.S.C. § 655(a) (1970). Later that same year, the American Iron and Steel Institute ("AISI") petitioned the Secretary to develop a standard designed specifically for coking operations, while the United Steelworkers of America petitioned the Secretary to formulate a more stringent performance standard. The petitions were both denied, pending expedited research conducted by the National Institute for Occupational Safety and Health ("NIOSH") in the...

To continue reading

Request your trial
26 cases
  • American Federation of Labor & Congress of Industrial Organizations v. Marshall
    • United States
    • U.S. Court of Appeals — District of Columbia Circuit
    • 11 Enero 1980
    ...v. OSHA, 509 F.2d 1301 (2d Cir.), cert. denied, 421 U.S. 992, 95 S.Ct. 1998, 44 L.Ed.2d 482 (1975).116 American Iron and Steel Inst. v. OSHA, 577 F.2d 825, 833, 834 (3d Cir. 1978), petitions for cert. pending, Nos. 78-918, 78-919 (upholding OSHA's standards for coke oven emissions on the ba......
  • United Steelworkers of America, AFL-CIO-CLC v. Schuylkill Metals Corp.
    • United States
    • U.S. Court of Appeals — Fifth Circuit
    • 2 Octubre 1987
    ...Daniel International Corp. v. OSHRC, 656 F.2d 925, 932 (4th Cir.1981); Steelworkers, 647 F.2d at 1221; American Iron & Steel Institute v. OSHA, 577 F.2d 825, 830 (3d Cir.1978); Action For Children's Television, 564 F.2d at 470. Finally, the agency may decide to modify its original proposed ......
  • Natural Resources Defense Council, Inc. v. S.E.C.
    • United States
    • U.S. Court of Appeals — District of Columbia Circuit
    • 20 Julio 1979
    ...172 at 187, 598 F.2d 91 at 106 (1978); EDF v. Costle, 188 U.S.App.D.C. 95, 97, 578 F.2d 337, 339 (1978); American Iron & Steel Inst. v. OSHA, 577 F.2d 825, 833-34 (3rd Cir. 1978); Superior Oil Co. v. FERC, 563 F.2d 191, 201 (5th Cir. 1977); Ethyl Corp. v. EPA, 176 U.S.App.D.C. 373, 392-401,......
  • National Indus. Sand Ass'n v. Marshall
    • United States
    • U.S. Court of Appeals — Third Circuit
    • 16 Mayo 1979
    ...under a cost-benefit analysis. This court has evaluated OSHA orders under a "financial viability" test, See American Iron and Steel Institute v. OSHA, 577 F.2d 825 (3d Cir. 1978), Petition for cert. filed, 47 U.S.L.W. 3422 (U.S. Jan. 19, 1978) (78- 919), and this choice of analysis was appr......
  • Request a trial to view additional results

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT