Fleischman Yeast Co. v. Federal Yeast Corporation

Decision Date09 May 1925
Citation8 F.2d 186
PartiesFLEISCHMAN YEAST CO. v. FEDERAL YEAST CORPORATION.
CourtU.S. District Court — District of Maryland

Mayer, Warfield & Watson, of New York City, for plaintiff.

Howson & Howson, of New York City, for defendant.

SOPER, District Judge.

The Fleischman Yeast Company filed its bill of complaint to enjoin the Federal Yeast Corporation against the infringement of patents No. 1,449,103 to Hayduck, and No. 1,449,127 to Nilsson and Harrison. The defendant's answer put in issue the validity, and, if the claims be narrowly construed, the infringement, of the patents. The first patent, which for brevity will be called 103, was based on an application filed October 30, 1920, by Frederick Hayduck of Germany, assignor to the Fleischman Company, and carries the effective date of invention of March 15, 1915, the filing date of Hayduck's corresponding German patent. The American patent was granted under the provisions of the Act of Congress of March 3, 1921 (41 Stat. 1313 Comp. St. Ann. Supp. 1923, §§ 9431a-9431h), permitting foreign inventors, whose rights to United States patents would otherwise have been forfeited on account of war conditions, to have such rights restored. The second patent, hereinafter called 127, was issued to Martin Nilsson and Norman S. Harrison, assignors to the Fleischman Company, on their application filed January 7, 1919. Both patents were issued on March 20, 1923, directly to the Fleischman Company as assignee.

Both patents relate to processes for the manufacture of bakers' yeast. The evidence shows that yeast is a broad term, which includes a wide variety of both wild yeast and cultivated yeast. Wild yeasts multiply rapidly, and, like weeds, tend to drive out the cultivated kinds. The latter have been cultured and bred for a variety of purposes. Race 12, obtained by pure culture in Germany, is regarded as the best bakers' yeast. The product, which is used in the baking industry, must possess special qualities and properties. Most yeasts, if placed in dough, either do not produce a sufficient quantity of gas to make a light loaf, or produce too much. They attack the gluten of the bread excessively, or spoil its texture, or form substances of unpleasant taste and odor. Bakers' yeast forms the right amount of gas, is favorable to the texture of the bread, and does not have an offensive taste or odor. It is of suitable color. Moreover, it has lasting qualities, while many other varieties rapidly deteriorate and become a slimy unattractive mass, unsuitable for bread making.

Yeast is a small cellular micro-organism. In its ordinary significance, it is a conglomerate mass of infinitesimally small cells. It multiplies by self-propagation, limited by the means of subsistence, and the quality and yield are greatly affected by the conditions under which propagation is carried on. Yeast has been manufactured for at least 50 years by innoculating a wort; that is, by preparing a clear liquid solution and stocking it with a small amount of seed yeast. Such worts include substances to nourish the yeast cells, and are called yeast nutrient solutions. It has been known to the art for a long period that yeast feeds upon sugar, nitrogen, its chief constituent, phosphorus, and other elements, and it has therefore been common practice to employ nutrient solutions containing these elements in yeast assimilable form. Thereby the number of cells and the total mass is multiplied. The field for investigation and improvement has been the composition of the nutrient solution, and the character of the process employed during the period of growth.

For many years it was the custom, in the commercial manufacture of yeast, to use cereal materials exclusively, namely, corn for sugar material, and rye and barley malt for nitrogen, phosphorus, etc. Molasses has also been used instead of corn, since it contains, not only sugar material, but also assimilable nitrogen and other ingredients necessary for yeast growth. All of the nutrient substances in cereals and molasses are organic in character; that is to say, they originate in the life processes of plants. It has also been ascertained that the yeast food may be supplied from mineral, or inorganic, sources, such as ammonium and phosphoric acid salts, containing nitrogen and phosphorus, and that yeast will thrive on substances of both sorts jointly used.

The process for the production of yeast, and the process for the production of alcohol have somewhat in common. But there are important differences, dependent upon which substance is to be made. In both processes, seed yeast is placed in a nutrient solution containing nitrogen and sugar. Nitrogen is the factor limiting the amount of yeast produced. If the production of yeast is desired, a high ratio of nitrogen to non-nitrogenous material must be maintained, for, when the yeast has absorbed the nitrogen, its multiplication ceases, and its remaining activity is expended in the production of alcohol. In order to obtain the greatest yield of yeast, the yield of alcohol must be restricted, or, if possible, eliminated altogether. On the other hand, in the production of alcohol, only so much yeast need be made as will actively ferment the sugar. In the first stage of the process, the yeast grows until the nitrogen is exhausted, whereupon the main fermentation begins, during which the yeast attacks the sugar and converts it into alcohol. When the process is concluded, the yeast as such is discarded, although it has some value as food for cattle. Obviously, when alcohol is to be made, the fermentative powers of the yeast are chiefly brought into play, while its reproduction function is most employed when a substantial yield of yeast is the object of the process. The problems of the distiller and brewer on one hand, and of the yeast manufacturer on the other, are kindred but they are not the same.

The Fleischman business was established in 1869. It has grown to a great size, as indicated by the fact that the assets of the company amount to about $35,000,000, including nine manufacturing plants in various parts of the United States. It is the leading yeast manufacturer in this country. The history of the changes in its factory process during the past 20 years, culminating in those covered by the patents in suit, illustrate the efforts of the trade to secure an improved process and product. During this period, the company has made a substantial annual expenditure to keep abreast in its method of production with the development in yeast manufacture in this country and in Europe. It has employed a general superintendent of manufacture, a practical yeast manufacturer at each plant, and a corps of chemists who have continually experimented in search of improvements.

In 1904, and for a long time prior thereto, the Fleischman Company was using the so-called old process (O. P.) in which the raw materials for the nutrient solution consisted entirely of cereals, to wit, corn, rye, and barley malt. The average yield of yeast amounted to 12 per cent. of the raw material, and at the same time there was produced about 7 gallons of alcohol for each 100 pounds of material. About 1911 a new process (N. P.) was introduced. In it, corn, corn malt, barley malt, and malt sprouts were used. The most important change was the introduction of a process of aeration in which air was forced through the wort for the purpose of furnishing oxygen and thereby stimulating the multiplication of the yeast. The nutrient for the yeast was still obtained from cereal sources — sugar from the corn, and nitrogen from organic material, such as malt sprouts. From the new process, there were obtained average yeast yields of 28 per cent. of the raw material, and a certain amount of alcohol. In 1913, the Fleischman Company modified its manufacture by adopting the German Bakers' (G. B.) process. This was practically the same as the N. P., except that corn malt was eliminated, and there was stronger aeration. Sugar and nitrogen were still obtained from organic sources. The average yeast yield was increased to about 35 per cent., and the alcohol yield was about 2½ gallons per 100 pounds of material.

In 1917, the G. B. process was superseded by what was called the German Bakers' Molasses (G. B. M.) process. This was during the war period, and it was necessary to conserve grain. Molasses was substituted for corn. With this process an average yeast yield of 33 per cent. was obtained, and about the same alcohol yield as before. With the exception of the substitution of molasses for corn, the process in other respects was the same as the G. B. process. It is noteworthy that this process represented the best method known to the Fleischman Company in the manufacture of yeast from molasses, and, secondly, that, although the method was cheaper, the yeast product was of a somewhat inferior quality. On the latter account, the company reverted to the G. B. method as soon as the government restrictions on grain were removed in 1918, notwithstanding an increased cost of production.

This was the situation until 1919, when the Fleischman Company, having acquired by assignment the inventions covered by the patents in suit, began the manufacture of yeast under the processes therein disclosed. The change is described as revolutionary. The use of cereals was abandoned entirely, and the wort was made from beet molasses, with the addition of ammonium phosphate and of aqua ammonia, added fractionally during the process. The solution therefore contained nutriment from both organic and inorganic sources. The yield of yeast was increased to 65 per cent. of the materials. and it was no longer necessary to make alcohol along with the yeast.

With these preliminary statements in mind, the validity of the patents may now be examined. Hayduck's patent, No. 103, is of a broader character than No. 127, and will be first considered. Specifically it relates to a process for the production of bakers'...

To continue reading

Request your trial
7 cases
  • Application of Hilmer
    • United States
    • U.S. Court of Customs and Patent Appeals (CCPA)
    • 28 d4 Julho d4 1966
    ...does not deal with the issue here at all. Next came Federal Yeast Corp. v. Fleischmann Co., 13 F.2d 570 (4th Cir. 1926), affirming 8 F.2d 186 (D.Md.1925). This was an infringement suit on two patents the validity of which was attacked. The court determined that they were for the same invent......
  • Eli Lilly and Company v. Brenner
    • United States
    • U.S. District Court — District of Columbia
    • 6 d1 Dezembro d1 1965
    ...actually relied upon by the Board. The defendant here cites three cases to sustain his position, as follows: Fleischmann Yeast Co. v. Federal Yeast Corp., 8 F.2d 186 (D.C.Md.1925), affirmed 13 F.2d 570 (4th Cir. 1926); Young v. General Electric Co., 96 F.Supp. 109 (N.D. Ill.1951); and Sperr......
  • Kilgore Mfg. Co. v. Triumph Explosives
    • United States
    • U.S. District Court — District of Maryland
    • 19 d3 Março d3 1941
    ...267 F. 840, 842; Bone v. Com'rs of Marion County, 251 U.S. 134, 40 S.Ct. 96, 64 L.Ed. 188; and cases cited in Fleischman Yeast Co. v. Federal Yeast Corp., D.C., 8 F.2d 186, 197." Of course the claim is good only as a combination of old elements which produces a new or improved result. There......
  • Standard Brands v. National Grain Yeast Corp.
    • United States
    • U.S. Court of Appeals — Third Circuit
    • 1 d3 Fevereiro d3 1939
    ...of the respective patent numbers. Hayduck -103 was held valid and infringed by the District Court of Maryland in Fleischmann Yeast Co. v. Federal Yeast Corporation, 8 F.2d 186, and this holding was affirmed by the Circuit Court of Appeals for the Fourth Circuit in 13 F.2d 570. Hayduck Paten......
  • Request a trial to view additional results

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT