Gubelmann v. Gang

Decision Date03 April 1969
Docket NumberPatent Appeal No. 8105.
Citation56 CCPA 1013,408 F.2d 758
PartiesWilliam S. GUBELMANN, Deceased, by Walter S. Gubelmann, Executor, Appellant, v. Herman GANG, Appellee.
CourtU.S. Court of Customs and Patent Appeals (CCPA)

Burgess, Ryan & Hicks, New York City (John F. Ryan, New York City, of counsel), for appellant.

Norman Friedman, Morristown, N. J., for appellee.

Before WORLEY, Chief Judge, and RICH, ALMOND and BALDWIN, Judges.

ALMOND, Judge.

William S. Gubelmann appeals from the decision of the Board of Patent Interferences awarding priority of invention of the subject matter of Interference No. 94,638 to Herman Gang, the junior party.

Gubelmann is involved on application serial No. 168,595, filed January 22, 1962, a "continuation" of application serial No. 69,227, filed November 14, 1960, which in turn was a "division" of application serial No. 194,273, filed November 6, 1950, and now patent No. 2,969,177. The benefit of the filing date of the latter application was accorded Gubelmann by the examiner. In issue are two counts copied from U. S. Patent No. 3,102,688, granted to the junior party, Gang, on an application filed February 2, 1960.

The invention relates to tens transfer or "carry" mechanisms for calculating machines, of the type known as "simultaneous" tens transfer mechanism. The counts read:1

1. In a register including an ordinal series of register wheels, a reciprocatory transfer actuator for each wheel, a common reciprocatory drive means for said actuators, normally disabled connecting means adjustable upon movement of each wheel from a first to a second given registering position to connect the actuator of the next higher order wheel to said drive means for a forward stroke in a primary transfer operation, said drive means thereupon being operable in a return stroke to restore said actuator independently of said connecting means, normally disabled drive transmission means between each pair of adjacent actuators operable during the forward stroke of operation of the lower order actuator of said pair to transmit like movement to the higher order actuator of said pair in a secondary transfer operation, said actuator drive means thereupon being operable to restore said pair of actuators simultaneously and each independently in a return stroke, and means operable when each wheel is in said first given registering position to enable the drive transmission means between its actuator and the actuator of the next higher order wheel.
2. In a register including an ordinal series of register wheels, a reciprocatory transfer actuator for each wheel, a common reciprocatory drive means for said actuators normally ineffectively operable in its forward stroke and normally operable in its return stroke to return all of said actuators simultaneously and each independently from their forward stroke position, normally disconnected coupling means for connecting each actuator to said drive means for forward stroke operation therewith in a primary transfer operation, means operable upon movement of each wheel from a first to a second given registering position to connect the coupling means for the actuator of the next higher order wheel, normally disabled drive transmission means operable by each actuator in its forward stroke to impart forward stroke secondary transfer operation to the next higher order actuator, and means operable when each wheel is in said first given registering position to enable the drive transmission means to the actuator of the next higher order wheel.

The sole issue raised by this appeal is whether the disclosure of Gubelmann supports certain limitations in the count or, stated briefly, Gubelmann's "right to make."

It is Gang's contention that Gubelmann cannot support the following limitations: (1) a drive means operable in its return stroke to restore the actuator (counts 1 and 2); (2) a drive means operable to restore the actuator independently of the connecting means (count 1). In his brief before this court Gang additionally contended, for the first time, that Gubelmann failed to support the counts "because there is no primary tens transfer between any orders of the mechanism Gubelmann is relying on." We agree with Gang as to Gubelmann's lack of support for the first limitation set forth above, and thus need not consider the other reasons raised by appellee.2

Procedurally, this appeal comes to this court with this history. The interference was originally declared on the basis of count 1. Gang alleged no date prior to the effective filing date of Gubelmann and, accordingly, was placed under order to show cause why judgment should not be entered against him. Gang responded by moving to dissolve on the ground that the count is not supported by Gubelmann's disclosure. Gubelmann filed two motions to amend by adding proposed counts 2-5 and 6. Both motions were opposed by Gang on the ground and for reasons similar to those advanced in his motion to dissolve. The primary examiner denied Gang's motion to dissolve and granted Gubelmann's motion to amend as to proposed count 2. Gang thereupon requested that final hearing be set for consideration of the question of Gubelmann's right to make counts 1 and 2 and that request was granted. The Board of Patent Interferences held that Gubelmann had failed to establish his right to make the counts and awarded priority to Gang.

The counts in issue define an invention which constitutes only a small portion of a relatively complex mechanism. However, a description of the specific structures relating to the counts will suffice for our consideration of the issue before us. First, an understanding of what is meant by the terms "primary" and "secondary" transfer is helpful. A primary tens transfer operation is one in which a tens transfer is caused by addition of a value into a register wheel through the usual value entry means such as differentially settable actuator gears. For example, the wheel stands at "8" and the value of "3" is added, causing a tens transfer of 1 into the order to the left. A secondary transfer is one in which a tens transfer is caused by a tens transfer from the adjacent lower order. For example, three adjacent orders of the register wheels register the value "998," and a value of "3" is added to the first, or lowest, order. The "3" added to "8" causes a primary tens transfer into the second order. This primary transfer of a value of 1 into this order will cause its register wheel to go from 9 to 0, which will cause a tens transfer into the third order. The latter wheel will go from "9" to "0," causing a tens transfer into the fourth order. The latter two transfers are secondary transfers, since they were caused by a tens transfer from the next lower order. A simultaneous tens transfer mechanism is one in which the primary and all resulting secondary transfers occur simultaneously.

The pertinent portion of the Gang device is shown in Fig. 3:

Gang's primary tens transfer mechanism is adequately described in Gubelmann's brief as follows:

A series of reciprocatory tens transfer actuator gear segments 10 are associated with an ordinal series of register wheel gears 6. Normally, actuators 10 are in the counterclockwise position of Fig. 3 to which they are restored by a common reciprocatory drive means comprising a bail 14 which extends transversely of the actuators above arms 10a of said actuators. Bail 14 is reciprocated, subsequent to digital registration, clockwise in a forward stroke and then returned counterclockwise in a return stroke.
An upstanding link 19 is pivotally mounted at its lower end to the end of arm 10a of each transfer gear segment 10. Normally link 19 is in the counterclockwise position of Fig. 3 with a hook end 19a out of the path of drive bail 14. Thus, in a sequence of operation, the bail is normally reciprocated without affecting the link or the actuator. In other words, the bail is normally reciprocating ineffectively.
When a register wheel passes through "9" in additive digital registration, link 19 of the next higher order transfer actuator 10 will be rocked clockwise to bring its hook end 19a above and into the path of bail 14 thereby connecting the actuator with the bail. Therefore, when bail 14 is rocked clockwise in its forward stroke, the connected transfer actuator 10 will be likewise rocked * * *. During this forward stroke, the related wheel gear 6 will remain disengaged and therefore transfer gear 10 will be idly operated in a primary transfer operation.
After the above forward stroke of the parts, gear 6 will be engaged with transfer actuator 10. Then during the return stroke movement of bail 14, its lower edge will engage arm 10a of transfer segment 10 thereby restoring said segment counterclockwise and entering one unit into the engaged wheel gear 6 in a primary transfer * * *. Drive bail 14 restores the actuator 10 and the connected hook link 19 counterclockwise about shaft 11 to normal position without any particular dependence upon the hook link 19. However, it should be noted that hook link 19 (connecting means) is restored counterclockwise about shaft 11 together with the connected actuator 10. Thereafter his shaft 21 must be rotated in a separate operation of the sequence to normalize the member 16 for shifting the hook link 19 counterclockwise about its own pivot and for thus disengaging the hook link 19 from the drive bail 14 to complete restoration of the hook link 19 to the position shown in Fig. 3.

One or more secondary transfers are performed simultaneously with a primary transfer as follows: Referring to Fig. 3, each tens transfer actuator 10 has an upstanding link 25 pivotally mounted at its lower end to a right arm 10b of said actuator. A pin 27 in arm 10b extends toward the next higher order actuator to the plane of link 25 of said higher order.

Consider an adjacent pair of actuators 10. If the register wheel of the lower order actuator stands at a value of "9,"...

To continue reading

Request your trial
19 cases
  • Mas-Hamilton Group v. LaGard, Inc.
    • United States
    • U.S. District Court — Eastern District of Kentucky
    • March 5, 1997
    ...person following the disclosure might obtain the results set forth in the claims; it must invariably happen. Gubelmann v. Gang, 56 C.C.P.A. 1013, 408 F.2d 758, 766 (C.C.P.A.1969). 57. Plaintiff argued at trial that the '656 patent provides insufficient information concerning solenoid timing......
  • Standard Oil Co. (Indiana) v. Montedison, S.p.A.
    • United States
    • U.S. Court of Appeals — Third Circuit
    • October 14, 1981
    ...disclosure might obtain the result set forth in the count; it must invariably happen." 544 F.2d at 652 (quoting Gubelmann v. Gang, 408 F.2d 758, 766 (Cust. & Pat.App.1969)). The court also stated that it must focus on the entire disclosure. The examination of the language of the patent appl......
  • Applied Materials, Inc. v. Advanced Semiconductor Materials America, Inc., s. 94-1428
    • United States
    • U.S. Court of Appeals — Federal Circuit
    • October 24, 1996
    ...following the disclosure might obtain the result set forth in the [claim]; it must invariably happen." Gubelmann v. Gang, 56 C.C.P.A. 1013, 408 F.2d 758, 766, 161 USPQ 216, 222 (1969). In this case, nothing in the 1969 application or in the record before the court shows that a material with......
  • Stamicarbon, Nv v. Chemical Construction Corp.
    • United States
    • U.S. District Court — District of Delaware
    • February 14, 1973
    ...disclosure requires that a person following the disclosures will invariably obtain the result set forth in the count. Gubelmann v. Gang, 408 F.2d 758, 766 (C.C.P.A. 1969). Ordinarily evidence will not be received as to what was intended by the disclosure of a pending application because the......
  • Request a trial to view additional results

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT