Commonwealth v. Camblin

Decision Date08 December 2017
Docket NumberSJC-11774
PartiesCOMMONWEALTH v. KIRK P. CAMBLIN.
CourtUnited States State Supreme Judicial Court of Massachusetts Supreme Court

NOTICE: All slip opinions and orders are subject to formal revision and are superseded by the advance sheets and bound volumes of the Official Reports. If you find a typographical error or other formal error, please notify the Reporter of Decisions, Supreme Judicial Court, John Adams Courthouse, 1 Pemberton Square, Suite 2500, Boston, MA, 02108-1750; (617) 557-1030; SJCReporter@sjc.state.ma.us

Middlesex.

Present: Gants, C.J., Lenk, Gaziano, Budd, Cypher, & Kafker, JJ.

Motor Vehicle, Operating under the influence. Evidence, Breathalyzer test, Scientific test.

Complaint received and sworn to in the Ayer Division of the District Court Department on April 28, 2008.

Following review by this court, 471 Mass. 639 (2015), a motion to exclude evidence as scientifically unreliable was heard by Mark A. Sullivan, J.

Andrew W. Piltser Cowan for the defendant.

Casey E. Silvia, Assistant District Attorney (Cyrus Y. Chung & Laura S. Miller, Assistant District Attorneys, also present) for the Commonwealth.

GAZIANO, J. In Commonwealth v. Camblin, 471 Mass. 639, 640, 651 (2015) (Camblin I), we remanded this case to the District Court to conduct a hearing on the scientific reliability of a particular model of breathalyzer, the Alcotest 7110 MK III-C (Alcotest), while retaining jurisdiction of the case. After conducting a Daubert-Lanigan hearing, a District Court judge found that the Alcotest was capable of producing scientifically reliable breath test results, and denied the defendant's motion to exclude this evidence at his trial for operating a motor vehicle while under the influence of alcohol. See Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579 (1993) (Daubert); Commonwealth v. Lanigan, 419 Mass. 15 (1994). The judge returned his findings to this court, and both sides filed supplemental briefing, prior to renewed oral argument before us. The defendant now contends that the judge abused his discretion in finding that the Alcotest satisfies the Daubert-Lanigan standard for the admissibility of scientific evidence. We conclude that there was no abuse of discretion and affirm the denial of the defendant's motion to exclude the Alcotest results.

1. Background. a. Prior proceedings. In 2008, a District Court complaint issued charging the defendant with operating a motor vehicle while under the influence of liquor (OUI), in violation of G. L. c. 90, § 24 (1) (a) (1). Before trial, the defendant moved to exclude admission of breath test evidence generated by the Alcotest; he argued that errors in the device's computer source code, and other deficiencies, rendered its results unreliable.1 A District Court judge denied the defendant's motion without conducting a Daubert-Lanigan hearing. The judge determined that because the Alcotest utilizes infrared spectroscopy technology, and the Legislature had prescribed a statutory and regulatory framework for the admissibility of "infrared breath-testing devices," see G. L. c. 90, §§ 24 (1) (e), 24K; 501 Code Mass. Regs. §§ 2.00 (2006), the results of an infrared breathalyzer are admissible, pursuant to the statute, without the need for a hearing to determine the reliability of these tests.

The defendant then filed a petition pursuant to G. L. c. 211, § 3, in the county court, challenging the denial of his motion to exclude the Alcotest test results. A single justice denied the defendant's request for interlocutory relief, and the case proceeded to a jury trial. At trial, the defendant did not introduce evidence challenging the reliability of the Alcotest breathalyzer results. The jury found the defendant guilty of operating a motor vehicle while under the influence of alcohol and operating a motor vehicle with a blood alcohol level of or exceeding 0.08 per cent. See G. L. c. 90, § 24 (1) (a) (1). The defendant appealed from his convictions, and we allowed hisapplication for direct appellate review. See Camblin I, 471 Mass. at 640-644.

In Camblin I, supra, the defendant primarily challenged the reliability of the Alcotest on the ground of asserted errors in the source code for its computer programs. In doing so, the defendant relied upon, among other things, affidavits from two expert witnesses and a report that he had submitted in support of his motion to exclude. One of the experts averred that he had scanned the Alcotest's source code, utilizing an "industry standard source code analysis tool," and had found more than 7,000 errors and 3,000 warning signals. Id. at 651. A different expert averred that the Alcotest is incapable of measuring accurately the amount of ethanol in a breath sample because the device does not exclude other "interfering substances" that might be present in the sample.2 Id. at 652-653. In addition, the report that the defendant submitted suggested that the calibration test used with the Alcotest does not ensure accurate results. Id. at 654. We remanded the matter to the District Court for a hearing to consider three issues: (1) the reliability of the Alcotest source code; (2) whether the Alcotest is capable of testing exclusively for ethanol; and (3) whether any source code errors affect the ability of the Alcotest to calculate a subject's blood alcohol content (BAC). Id. at 651-655.

b. Proceedings on remand. On remand, the judge conducted a Daubert-Lanigan hearing, at which experts for the defendant and the Commonwealth testified about the reliability of the Alcotest. After the hearing, the judge issued a decision containing his comprehensive findings of fact, and remitted them to this court. With respect to the defendant's challenge to reliability of the source code, the judge concluded that "despite the minor flaws in the source code, the Alcotest provides a reliable measure of BAC." These minor source code flaws, he found, "pose a very remote chance of returning a falsely high BAC result, on the magnitude of a million to one. . . . The error rate here is well within an acceptable range necessary to make the Alcotest BAC results scientifically reliable."

In this appeal, the defendant has chosen not to pursue his arguments concerning the source code as the primary basis for the asserted lack of reliability in the Alcotest. Rather, the current focus of the defendant's challenge to the reliability of the Alcotest is that it cannot distinguish ethanol from other "interfering" substances that might be present in a breath sample. The following facts were adduced at the Daubert-Lanigan hearing.

The Alcotest is an evidential breath-testing device manufactured by Draeger Safety Diagnostics, Inc. (Draeger). Draeger describes the Alcotest as a "dual sensoric instrument" because it utilizes both infrared spectroscopy and electrochemical fuel cell sampling to analyze alcohol content in a breath sample. The subject blows air into the device through a tube connected to a chamber. An infrared light source at one end of the chamber generates energy in the 9.5 micron range,3 and a detector on the opposite end of the chamber receives the energy from the infrared source. Because infrared energy is absorbed by ethanol molecules, any such molecules that are present in a breath sample effectively "soak up" the infrared energy, and that portion of it does not reach the detector. The Alcotest is designed to measure a subject's breath alcoholcontent based on the amount of infrared energy that reaches the detector as compared to the amount of energy detected when the chamber has been cleared and is filled simply with ambient air. In other words, the reduction in infrared energy (which has been absorbed by the ethanol molecules) from one end of the chamber to the other is equivalent to the concentration of alcohol present in the chamber.

In a dual-sensor Alcotest device, at the same time that the infrared energy is passing through the main chamber, a small portion of the breath sample enters a fuel cell sensor for a second measurement of breath alcohol. The fuel cell is an electrochemical device that essentially operates like a battery. It generates an electrical current from energy produced by a chemical reaction between any ethanol and the oxygen contained within the breath sample. The fuel cell is designed to measure the "footprint" of the chemical reaction and to compare that footprint to a baseline footprint created by a known ethanol sample. To produce a valid BAC test result, the infrared energy reading and the fuel cell reading must be in agreement with one another. The Alcotest reports only the infrared reading to the operator; the fuel cell reading is intended to operate as a double check on the accuracy of the infrared measurement.

Both sides presented expert witness testimony on the question whether the Alcotest is capable of testing exclusively for ethanol, while excluding interfering substances. The defendant introduced testimony by Dr. Donald J. Barry, Ph.D., an astronomer with a substantial background in infrared spectrometry technology, as well as a background in chemistry. Barry testified that, where interfering substances are present, the Alcotest is incapable of testing exclusively for ethanol, and therefore its results can be tainted by the presence of interfering substances in the sample. Barry explained that the Alcotest's infrared spectroscope identifies a carbon-oxygen molecule that is emitted at a 9.5 micron wavelength. Several organic compounds other than ethanol, including acetone4 and methanol, also emit energy within the 9.5 micron range of the electromagnetic spectrum, and would similarly be detected by the Alcotest's spectroscope. Barry concluded that, as a result, the Alcotest could not reliably isolate and identify ethanol in a subject's breath to the exclusion of other interfering substances sharing a similar molecular structure.

Barry was not familiar with the particular fuel cell technology used in the Alcotest. He opined generally, however,...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT